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Abstract
We study the Hubbard model at half band-filling on a Bethe lattice with
infinite coordination number in the paramagnetic insulating phase at zero
temperature. We use the dynamical mean-field theory (DMFT) mapping to
a single-impurity Anderson model with a bath whose properties have to be
determined self-consistently. For a controlled and systematic implementation
of the self-consistency scheme we use the fixed-energy approach to the
DMFT (FE-DMFT). In FE-DMFT, the onset and the width of the Hubbard
bands are adjusted self-consistently but the energies of the bath levels are
kept fixed relatively to both band edges during the calculation of self-
consistent hybridization strengths between impurity and bath sites. Using
the dynamical density-matrix renormalization group method (DDMRG) we
calculate the density of states with a resolution ranging from 3% of the
bare bandwidth W = 4t at high energies to 0.5% in the vicinity of the
gap. The DDMRG resolution and accuracy for the density of states and
the gap is superior to those obtained with other numerical methods in previous
DMFT investigations. We find that the Mott gap closes at a critical coupling
Uc/t = 4.45 ± 0.05. At U = 4.5t, we observe prominent shoulders near
the onset of the Hubbard bands. They are the remainders of the quasi-
particle resonance in the metallic phase which appears to split when the gap
opens at Uc.

1. Introduction

In the limit of high dimensions [1], models for correlated lattice electrons can be mapped
onto effective single-impurity problems [2, 3]. In some cases, the exact solution for a many-
particle Hamiltonian has been found, e.g., for the Falicov–Kimball model [2, 4], and for other
problems a few exact results have been obtained; for reviews, see [5, 6]. Despite its increasing
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popularity [5, 7, 8], it must be kept in mind that the dynamical mean-field theory (DMFT)
still poses a difficult many-body problem: the effective single-impurity model must be solved
self-consistently for the one-particle Green function at all frequencies. Consequently, reliable
numerical or analytical ‘impurity solvers’ must be developed and the self-consistency scheme
must be implemented in a controlled way.

The Hubbard model at half band-filling provides an ideal test case for the DMFT. It
describes s-electrons with a purely local interaction of strength U and electron transfer matrix
elements −t/

√
Z between Z → ∞ neighbouring sites on a lattice. On the one hand, the

model contains an interesting quantum phase transition between the paramagnetic metal and
the paramagnetic (Mott–Hubbard) insulator [9] at a finite coupling. On the other hand, for
a Bethe lattice with a semi-elliptic bare density of states of width W = 4t, perturbation
theory to fourth order in U/W [10] and to second order in W/U [11] have been carried out
at zero temperature, against which approximate analytical and numerical techniques can be
tested. In this way, merits and limitations of analytical methods (Hubbard-III approximation
[12], iterated perturbation theory [13], local moment approach [14]) and numerical techniques
(exact diagonalization schemes (ED) [15, 16], numerical renormalization group (NRG) [17])
have been revealed, together with the difficulties in implementing the self-consistency scheme
in numerical approaches.

The latter problem results from the fact that numerical approaches work with a finite
number of sites to represent the continuous bath coupled to the impurity site. Thus the energy
resolution is necessarily limited by finite-size effects. Moreover, it is not clear a priori how
one can define a self-consistency condition for the discretized impurity problem such that
the self-consistent solution is approached in a smooth and controlled way in the limit of an
infinite number of bath sites. (In other approaches to the impurity problem, such as quantum
Monte Carlo (QMC) simulations, the bath is not discretized but the imaginary time has to be
discretized, which leads to similar problems.) In a previous work [10, 11], this problem has
been solved by the ‘fixed-energy’ approach to the FE-DMFT: (i) a frequency interval I is split
into subintervals I� of equal length, whose mid-points ε� give the energies of the bath sites,
and the density of states is put to zero outside this interval I; (ii) the hybridization strengths
between impurity and bath sites is determined self-consistently for these fixed energies ε�.
Within the fixed-energy approach to DMFT, the resolution of the frequency interval I improves
systematically with system size ns, and an extrapolation ns → ∞ becomes meaningful. As
has been shown in [10, 11], the FE-DMFT combined with ED [FE-DMFT(ED)] with ns � 15
provides a reasonable description of the metallic phase for U � 0.4W and of the Mott–Hubbard
insulator for U/W � 1.2.

With ED, finite-size effects are prominent in the interesting region of the metal–insulator
transition, i.e., for U ≈ W . Consequently, numerical approaches are required which overcome
the limitation of the ED technique. The dynamical density-matrix renormalization group
method (DDMRG) [18] treats large systems (here with up to ns = 161 sites) very accurately.
It is an extension of the standard density-matrix renormalization group (DMRG) [19, 20] to the
calculation of dynamical correlation functions. For the computation of a continuous spectrum,
DDMRG is more efficient than previous generalizations of the DMRG to dynamical quantities
such as the Lanczos-DMRG [21], or the correction-vector DMRG [22]. The DDMRG has been
applied successfully to the single-impurity Anderson model [23] and to DMFT calculations
for the metallic phase of the Hubbard model [10].

In this work, we present results for the Mott–Hubbard insulator on a Bethe lattice with Z →
∞ neighbours obtained with FE-DMFT combined with DDMRG (FE-DMFT(DDMRG)).
In section 2 we specify the Hubbard model, the effective single-impurity Hamiltonian, the
corresponding one-particle Green functions, and the self-consistency condition. We also recall
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the results from perturbation theory in 1/U. In section 3 we summarize important aspects of
the fixed-energy approach to the DMFT, and the DDMRG impurity solver. Details can be
found in [10, 11, 23]. In section 4 we display the density of states, the gap for single-particle
excitations, the ground-state energy and the average double occupancy as a function of the
interaction strength U in the Mott insulating phase found for U > Uc = 4.45(±0.05)t.
A short summary and conclusions complete our presentation. A sum rule for the ground-
state energy of the single-impurity Anderson model at self-consistency is derived in an
appendix.

2. Definitions

2.1. Hamiltonian

We investigate spin-1/2 electrons on a lattice whose motion is described by

T̂ =
∑
�i,�j;σ

t�i,�jĉ
+
�i,σ ĉ �j,σ , (1)

where ĉ+
�i,σ , ĉ�i,σ are creation and annihilation operators for electrons with spin σ =↑, ↓ on site �i.

The matrix elements t�i,�j are the electron transfer amplitudes between sites �i and �j, and t�i,�i = 0.
Since we are interested in the Mott insulating phase, we consider exclusively a half-filled band
where the number of electrons N equals the number of lattice sites L.

For lattices with translational symmetry, t�i,�j = t(�i− �j), the operator for the kinetic energy
is diagonal in momentum space,

T̂ =
∑
�k,σ

ε(�k)ĉ+
�k,σ

ĉ �k,σ , (2)

where

ε(�k) = 1

L

∑
�i,�j

t(�i − �j)e−i(�i−�j)�k. (3)

The density of states for non-interacting electrons is then given by

ρ(ε) = 1

L

∑
�k

δ(ε − ε(�k)). (4)

In the limit of infinite lattice dimensions and for translationally invariant systems without
nesting, the Hubbard model is characterized by ρ(ε) alone, i.e. higher-order correlation
functions in momentum space factorize [24]. For our explicit calculations we shall later
use the semi-circular density of states

ρ0(ω) = 2

πW

√
4 −

(
4ω

W

)2 (
|ω| � W

2

)
, (5)

1 =
∫ W/2

−W/2
dω ρ0(ω), (6)

where W = 4t is the bandwidth. In the following, we take t ≡ 1 as our unit of energy.
This density of states is realized for non-interacting tight-binding electrons on a Bethe
lattice of connectivity Z → ∞ [25]. Specifically, each site is connected to Z neighbours
without generating closed loops, and the electron transfer is restricted to nearest neighbours,
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t�i,�j = −t/
√

Z when �i and �j are nearest neighbours and zero otherwise. The limit Z → ∞ is
implicitly understood henceforth.

The electrons are taken to interact only locally, and the Hubbard interaction reads

D̂ =
∑

�i

(
n̂�i,↑ − 1

2

) (
n̂�i,↓ − 1

2

)
, (7)

where n̂�i,σ = ĉ+
�i,σ ĉ�i,σ is the local density operator at site �i for spin σ. This leads us to the

Hubbard model [26],

Ĥ = T̂ + UD̂. (8)

The Hamiltonian explicitly exhibits particle–hole symmetry, i.e., Ĥ is invariant under the
particle–hole transformation

ĉ+
�i,σ 	→ (−1)|�i|ĉ�i,σ , ĉ�i,σ 	→ (−1)|�i|ĉ+

�i,σ , (9)

where |�i| counts the number of nearest-neighbour steps from the origin of the Bethe lattice
to site �i. The chemical potential µ = 0 then guarantees a half-filled band for all tempera-
tures [6].

2.2. Green functions

The time-dependent local single-particle Green’s function at zero temperature is given
by [27]

G(t) = −i
1

L

∑
�i,σ

〈T̂ [ĉ�i,σ(t)ĉ
+
�i,σ]〉. (10)

Here T̂ is the time-ordering operator and 〈· · ·〉 implies the average over the degenerate ground
states with energy E0, and (taking h̄ ≡ 1 henceforth)

ĉ�i,σ(t) = exp(iĤt)ĉ�i,σ exp(−iĤt) (11)

is the annihilation operator in the Heisenberg picture.
In the insulating phase, we can readily identify the contributions from the lower (LHB)

and upper (UHB) Hubbard bands to the Fourier transform of the local Green function
(η = 0+),

G(ω) =
∫ ∞

−∞
dt eiωtG(t) = GLHB(ω) + GUHB(ω),

GLHB(ω) = 1

L

∑
�i,σ

〈ĉ+
�i,σ[ω + (Ĥ − E0) − iη]−1ĉ�i,σ〉,

GUHB(ω) = −GLHB(−ω). (12)

The last equality follows from the particle–hole symmetry (9). Therefore, it is sufficient to
evaluate the local Green function for the lower Hubbard band which describes the dynamics
of a hole inserted into the system.

The density of states for the lower Hubbard band can be obtained from the imaginary part
of the Green function (12) for real arguments via [27]

DLHB(ω) = 1

π
�GLHB(ω) = 1

L

∑
�i,σ

〈ĉ+
�i,σδ(ω + Ĥ − E0)ĉ�i,σ〉, (13)
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with ω � −	(U)/2 < 0, where 	(U) is the single-particle gap. Particle–hole symmetry
results in a symmetric density of states around ω = 0 at half band-filling

D(ω) = DLHB(ω) + DUHB(ω) (14)

with DUHB(ω) = DLHB(−ω).
We define the (shifted) moments Mn(U) of the density of states in the lower Hubbard

band via

Mn(U) =
∫ −	(U)/2

−∞
dω

(
ω + U

2

)n

DLHB(ω). (15)

In particular, from (13), we find that [27]

M0(U) = 1, (16)

M1(U) = 1

L

(
E0(U) + U

∂E0(U)

∂U

)
+ U

2
(17)

are two useful sum rules which we shall employ later. We also note that the average double
occupancy is related to a derivative of the ground-state energy by

d(U) = 1

4
+ 1

L
〈D̂〉 = 1

4
+ 1

L

∂E0(U)

∂U
. (18)

2.3. Results from strong-coupling perturbation theory

We shall test our numerical results against those from strong-coupling perturbation theory [11].
To second order in 1/U, the density of states of the lower Hubbard band reads

DLHB(ω) =
∫ 2

−2
dε ρ0(ε)s(ε, U)δ

(
ω + U

2
+ g(ε, U)

)
+ O(U−3),

s(ε, U) = 1 − ε

U
+ 9(ε2 − 1)

4U2
, g(ε, U) = ε − ε2 − 3

2U
+ 3ε(2ε2 − 7)

8U2
.

(19)

The zeros of DLHB(ω) provide the single-particle gap and the width of the Hubbard
bands W∗(U),

	(U) = U − 4 − 1

U
− 3

2U2
+ O(U−3), (20)

W∗(U) = 4 + 3

2U2
+ O(U−3) (21)

up to second order in 1/U. The Hubbard bands display a square-root onset,

DUHB(ω) ∼
(

ω − 	(U)

2

)1/2

, ω → 	(U)

2
. (22)

Note that there is no weight outside the Hubbard bands up to and including order 1/U3 but
there are contributions to order 1/U4 and higher. Our numerical results show that the weight
outside the (primary) Hubbard bands at |ω| � 	(U)/2 + W∗(U) is at most 1% of the total
density of state for all interaction strengths in the insulating phase.
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Recently, Kalinowski and co-workers [28, 29] calculated the ground-state energy to
11th order in the inverse coupling strength. Here we restate their results:

E0(U)

L
= −U

4
− 1

2U
− 1

2U3
− 19

8U5
− 593

32U7
− 23877

128U9
− 4496245

2048U11
− O(U−13), (23)

d(U) = 1

2U2
+ 3

2U4
+ 95

8U6
+ 4151

32U8
+ 214893

128U10
+ 49458695

2048U12
+ O(U−14). (24)

Unfortunately, the computational effort increases exponentially as a function of the order, and
it will be difficult to obtain much higher orders of the expansion.

3. FE-DMFT(DDMRG)

In this section, we first discuss the single-impurity model onto which the Hubbard model can
be mapped in the limit of infinite dimensions. Next, we recall the fixed-energy algorithm for
the DMFT. Lastly, we discuss the DMRG for the numerical solution of the single-impurity
Anderson model.

3.1. DMFT

In the limit of infinite dimensions [1], and under the conditions of translational invariance and
convergence of perturbation theory in strong and weak coupling, the Hubbard model can be
mapped onto single-impurity models [2, 3, 5], which need to be solved self-consistently. In
general, these impurity models cannot be solved analytically.

For an approximate numerical treatment various different implementations are
conceivable. One realization is the single-impurity Anderson model in ‘star geometry’,

ĤSIAM =
ns−1∑
�=1;σ

ε�ψ̂
+
σ;�ψ̂σ;� + U

(
d̂+

↑ d̂↑ − 1

2

) (
d̂+

↓ d̂↓ − 1

2

)

+
∑

σ

ns−1∑
�=1

V�(ψ̂
+
σ;�d̂σ + d̂+

σ ψ̂σ;�), (25)

where V� are real, positive hybridization matrix elements. The model describes the
hybridization of an impurity site with Hubbard interaction to ns−1 bath sites without interaction
at energies ε�. Here d̂+

σ , d̂σ , ψ̂+
σ;�, ψ̂σ;� are creation and annihilation operators for electrons with

spin σ =↑, ↓ on the impurity and the bath site �, respectively. In order to ensure particle–hole
symmetry, we have to set ε� = −εns−� and V� = Vns−� for � = (ns + 1)/2, . . . , ns − 1.
Moreover, since we are interested in the Mott–Hubbard insulator, we only use odd ns so that
there is no bath state at ε = 0.

For a given set of parameters {ε�, V�} the model (25) defines a many-body problem for
which the single-particle Green function

G
(ns)

dd;σ(t) = −i〈T̂ [d̂σ(t)d̂
+
σ ]〉SIAM (26)

must be calculated numerically. Here, 〈. . .〉SIAM implies the ground-state expectation value
within the single-impurity model.

Ultimately, we are interested in the limit ns → ∞ where

H(ns)(ω) =
ns−1∑
�=1

V 2
�

ω − ε� + i0+sgn(ω)
(27)



Dynamical density-matrix renormalization group 7069

becomes the hybridization function of the continuous problem,

H(ω) = lim
ns→∞ H(ns)(ω) (28)

and the Green function is

Gdd(ω) = lim
ns→∞ [G(ns)

dd;↑(ω) + G
(ns)

dd;↓(ω)]. (29)

(For finite ns the Green functions G
(ns)

dd;σ(ω) are different for σ = ↑, ↓ because the system
contains an odd number ns of electrons.) As shown in [5], the hybridization function and the
Green function must obey a self-consistency relation

H(ω) = Gdd(ω)

2
(30)

to describe the Hubbard model on the Bethe lattice with connectivity Z → ∞. At self-
consistency, the Green function of the impurity problem gives the Green function of the
Hubbard model,

Gdd(ω) = G(ω). (31)

For a finite-size representation of the bath, ns < ∞, it is generally not possible to find a
self-consistent solution to the finite-system version of (30),

H(ns)(ω) = 1
2 [G(ns)

dd;↑(ω) + G
(ns)

dd;↓(ω)]. (32)

Instead, we have to choose bath energies ε� and hybridizations V� for finite ns in such a way
that the single-particle Green function and the hybridization function fulfil (30) for ns → ∞.
Therefore, numerical methods will differ in the way an approximate self-consistency condition
is defined. This is a source of ambiguity because there can be more than one self-consistent set
of parameters {ε�, V�} for a fixed ns. Moreover, it cannot be guaranteed that different schemes
will ultimately coincide for ns → ∞.

3.2. FE-DMFT

In [11] a new algorithm for solving the self-consistency problem has been introduced. The
accuracy and stability of this ‘fixed-energy DMFT’ approach has been demonstrated using an
ED technique as ‘impurity solver’, i.e. to compute the single-impurity Green function G

(ns)

dd,σ(ω).
In this work, we describe how to use the FE-DMFT together with the DDMRG as impurity
solver.

For the Mott–Hubbard insulator, we make the assumption that all the spectral weight is
concentrated in the upper and lower Hubbard bands, i.e. in the finite frequency interval

I =
{
ω

∣∣∣∣	(U)

2
� |ω| � 	(U)

2
+ W∗(U)

}
. (33)

The onset of the upper Hubbard band, 	(U)/2, and the width of the Hubbard bands, W∗(U),
are determined self-consistently; see below. We start with some input guess 	(U) and W∗(U),
which we may take from second-order perturbation theory (20), from the FE-DMFT with ED
[11], or from previous runs for slightly different values of U or ns. We discretize the Hubbard
bands equidistantly, i.e. we fix the energies ε� by

ε� = −εns−� = 	(U)

2
+

(
� − 1

2

)
δ(U), 1 � � � (ns − 1)/2, (34)
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where

δ(U) = 2W∗(U)

ns − 1
(35)

is the distance between two consecutive energies ε� in the same Hubbard band. Then we
divide the interval I into ns − 1 intervals I� of width δ(U) centred around each energy ε�. By
fixing the energies at the centres of equidistant intervals we can be sure that our resolution of
the Hubbard bands becomes increasingly better as ns increases. For a typical ns = 65 and
W∗(U) ≈ 4t we have δ(U) ≈ 0.125.

When we integrate the imaginary part of the Green function over the interval I� we obtain
weights w�,

w� =
∫

I�

dω
|�Gdd(ω)|

2
. (36)

At self-consistency (30) and for ns → ∞, these weights obey

V 2
� = w�. (37)

We can use this relation to calculate new parameters V� from a Green function Gdd(ω). As
initial values for Gdd(ω) we may again use the result of second-order perturbation theory (19)
in (36), the results of the FE-DMFT(ED) [11], or we start from previous runs for slightly
different values of U or ns. The latter approach is recommendable close to the transition.

At every iteration, the impurity Green function Gdd(ω) must be calculated with the help
of an ‘impurity solver’. Here, we use the dynamical DMRG to calculate G

(ns)

dd,σ(ω) for the
Hamiltonian (25) with finite ns. Then, the deconvolution of the sum of these Green functions
forσ =↑, ↓gives an excellent approximation of the Green functionGdd(ω) in the limitns → ∞
at all needed frequencies (see the next subsection).

We now describe the iterative procedure used to determine the onset of the upper Hubbard
band 	(U)/2, its width W∗(U), and the Green functions Gdd(ω) self-consistently. Starting
from the initial 	(U)/2, W∗(U) and Gdd(ω), we compute the energies ε� and hybridization
matrix elements V� of the single-impurityAnderson model (25) using equations (34)–(37). In a
first calculation, we consider this model with ns sites and use the DDMRG method to compute
the full Green functions G

(ns)

dd,σ(ω) with a resolution η ∼ δ(U) ∼ 1/ns. As explained above,
after deconvolution of these Green functions we obtain a new Green function Gdd(ω), which
is used in the next iteration. Simultaneously, we use the DDMRG method with a broadening
η � δ(U) to compute the energy 	(U, n′

s)/2 of the first pole in G
(ns)

dd,σ(ω) (i.e., the lowest state
contributing to the density of states) for the single-impurityAnderson model with n′

s � ns sites.
Typically, we calculate 	(U, n′

s) for n′
s = 81, 97, 113, 129, 145, 161. (These calculations can

be carried out for larger system sizes than the calculation of the full Green functions because
we only need to determine ground-state properties and a small fraction of the Green function
spectrum around ω ≈ 	(U)/2.) After extrapolating to the thermodynamic limit,

	(U) = lim
n′

s→∞
	(U, n′

s), (38)

we obtain a new estimate for the onset of the upper Hubbard band, 	(U)/2, which is used in the
next iteration. At the same time we use the sum rule of the appendix for the ground-state energy
ESIAM

0 (U, n′
s) of the effective single-impurity Anderson model to calculate a new bandwidth,

	(U) + W∗(U)

2
= lim

n′
s→∞

ESIAM
0 (U, n′

s)

n′
s

. (39)

After a new gap 	(U), bandwidth W∗(U) and Green function Gdd(ω) have been obtained
we can start the next iteration. We repeat this procedure until it converges to a fixed point.
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0 0.01 0.02 0.03
0

0.1

0.2
0 0.01 0.02

Figure 1. Extrapolation of the lowest lying single-particle excitation energy 	(U, n′
s)/2 as a

function of inverse system size (lower axis) for U = 4.6 at self-consistency (solid circles). The
open circles give the energy ε1 as a function of the weight w1 (upper axis) for the same system
sizes n′

s = 81, 97, 113, 129, 145, 161.

Typically, we need less than 10 iterations for the procedure to converge, depending on the
choice of the starting parameters. We terminate the iterative procedure when the variation of
the gap 	(U) and bandwidth W∗(U) are smaller than 10−3t from one iteration to the next.
At that point the variation of Gdd(ω) is found to be smaller than 10−3 for all frequencies ω.
This iterative procedure is stable; for small deviations from the self-consistent values, the gap
and the width of the Hubbard bands are driven back to the fixed point of the iteration. We
have also checked that, for fixed ns, a unique solution for Gdd(ω) is found for various starting
choices. Obviously, our FE-DMFT(DDMRG) approach yields self-consistent results for the
gap, bandwidth, and Green function of the Hubbard model. Moreover, it is possible to calculate
ground-state properties of the Hubbard model (energy, double occupancy) from ground-state
properties of the self-consistent single-impurity Anderson model, as shown in the next section.

In figure 1 we give an example of the extrapolation scheme for 	(U, n′
s) at the fixed-point

of our iterative procedure for U = 4.6. As expected, the results for 81 � n′
s � 161 extrapolate

linearly in 1/n′
s. Note that the FE-DMFT with ED [11] was limited to n′

s = ns = 15, and
finite-size effects had to be controlled by a combination with the criterion of a square-root onset
of the Hubbard bands, which is suggested by perturbation theory (22). The DDMRG treats
system sizes up to n′

s ∼ O(200) which makes this ‘weight criterion’ obsolete. Nevertheless,
we can use the ‘weight criterion’ as a consistency check. As argued in [11], we should find

ε1 − 	(U, n′
s)

2
∝ (w1)

2/3, (40)

for a square-root increase in the density of states near the band edges. In figure 1 we show
ε1 as a function of w

2/3
1 for system sizes 81 � n′

s � 161 as open circles. Both extrapolated
values for the gap from (38) and (40) agree. The linear behaviour of ε1 as a function of w

2/3
1

confirms the square-root increase of the density of states near the gap. Note, however, that the
region in which the square-root onset is discernible becomes very small close to the transition
and thus large system sizes are required.
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For U � 4.6, a constant discretization of the Hubbard band with δ(U) ≈ 0.125 is not
sufficient to resolve fine structures of the density of states near the single-particle gap. In order
to obtain a better resolution for |ω| ≈ 	(U)/2 without excessive increase of the computational
effort we use a variable discretization scheme as described in [23]. The resolution around the
gap is improved by using a finer discretization δ(U) of the intervals 	(U)/2 < |ω| < t (i.e.,
more bath states are used in those intervals). The smaller δ(U) allows us to use a smaller
broadening η in DDMRG calculations for those frequencies. We combine the high-energy
spectrum obtained with the usual resolution and the low-energy spectrum obtained with the
improved resolution and then deconvolve the result to obtain a new Green function Gdd(ω).
This yields Gdd(ω) for |ω| < 0.6t with a resolution, which is up to an order of magnitude better
than that for a constant discretization with ns = 65. For the results presented here we have
used δ(U) = 0.02 (corresponding to ns = 113 and η = 0.03) for U = 4.5 and δ(U) = 0.031
(ns = 97 and η = 0.05) for U = 4.6 in the intervals 	(U)/2 < |ω| < t.

3.3. DDMRG for the single-impurity Anderson model

The DDMRG for the single-impurity Anderson model is described in detail in [23]. Here, we
summarize the essential ingredients. As the DMRG method is most accurate for systems with
a quasi one-dimensional structure, we perform calculations of the single-impurity Anderson
model (25) in its equivalent linear-chain form [30]

ĤSIAM = U(d̂+
↑ d̂↑ − 1

2 )(d̂+
↓ d̂↓ − 1

2 ) + V
∑

σ

(f̂+
σ;0d̂σ + d̂+

σ f̂ σ;0)

+
∑

σ

ns−2∑
�=0

λ�(f̂
+
σ;�f̂ σ;�+1 + f̂+

σ;�+1f̂ σ;�). (41)

The DDMRG provides the local density of states

D
η

dd,σ(ωi) = −sgn(ωi)
�G

(ns)

dd,σ(ωi)

π
(42)

at selected frequencies ωi very accurately. The real part of the Green function can also
be calculated with DDMRG but to carry out the FE-DMFT calculation we need only the
imaginary part. To simulate the continuous spectrum of an infinite chain in a calculation with
a finite ns, a broadening η is introduced which must be scaled as a function of the system size
[18]. If η is chosen too small, the density of states displays finite-size peaks as those seen
in [31]. If η is chosen too large, relevant information is smeared out. As an empirical fact,
η ∼ δ(U) = 2W∗(U)/(ns−1) should be chosen, i.e., the resolution scales as the inverse system
size, as found for one-dimensional lattice models [18].

To carry out the iterative procedure described in the previous section, we determine
the density of states at selected frequencies ωi. Typically, we choose them to resolve the
effective bandwidth W∗(U) equidistantly, ωi+1 − ωi = δω ≈ η ∼ δ(U). We then ‘deconvolve’
the DDMRG data by inverting the Lorentz transformation [10]

D
η

dd(ωi) =
∑

j

δω

π

η

η2 + (ωi − ωj)2
Ddd(ωj), (43)

where D
η

dd(ω) = D
η

dd,↑(ω) + D
η

dd,↓(ω). Through equation (42) this deconvolved density of
states Ddd(ω) determines the imaginary part of the Green function Gdd(ω) which is used in
the FE-DMFT(DDMRG) scheme. The procedure can be repeated for different choices of the
equidistant frequencies ωj to get more values of Ddd,σ(ωj). In practice, we use two different
sets of frequencies, corresponding to a frequency resolution comparable to the bath energy
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Figure 2. Main figure: density of states of the upper Hubbard band for U = 6; - - - -, result of the
DDMRG with a broadening η = 0.2; ◦, DDMRG density of states after deconvolution (η = 0);
——, result from second-order perturbation theory in 1/U (19). The side figures show the linear
behaviour of the square of the density of states as a function of frequency near the band edges. The
lines are linear fits.

resolution δ(U). In this way, DDMRG provides a set of values Ddd,σ(ωj) for the density
of states. The main advantage of this deconvolution is that no extrapolation or finite-size
scaling analysis of these values Ddd,σ(ωj) is necessary because they converge very quickly
to the ns → ∞ limit. Naturally, structures with an intrinsic width of less than η cannot be
resolved with this procedure even if we use many different sets of frequencies. Therefore,
with DDMRG we obtain an accurate discrete representation of the density of states for the
continuum model (and thus of the imaginary part of Gdd(ω)), except for small regions around
its onset and closing points where the derivative of the density of states changes singularly.
With the DDMRG method [18], we calculate the one-particle Green function (26) for system
sizes up to ns ∼ O(200). Therefore the FE-DMFT(DDMRG) leads to a much better resolution
of the Hubbard bands than our previous FE-DMFT with ED which was limited to ns = 15.

An example of the density of states obtained with the FE-DMFT(DDMRG) approach is
shown in figure 2 for U = 6. For this interaction strength, the agreement of the deconvolved
DDMRG data with the second-order strong-coupling perturbation theory (19) for the Hubbard
model is almost perfect. Our deconvolution scheme gives slightly negative values in the
vicinity of the band edges. These effects are small and are to be expected for sharp band
edges in the density of states at ω = 	(U)/2 and ω = 	(U)/2 + W∗(U). We note
that our numerical results are in much better agreement with perturbation theory than the
results obtained in a recent DMFT(DMRG) study [31] where Lanczos-DMRG and a different
self-consistency scheme has been used. Therefore, we think that our results for the gap
and the critical interaction strength are also more accurate than those presented in that
work [31].

4. Results

In this section we present the results for the Mott insulating phase of the Hubbard model
which we have obtained with our FE-DMFT(DDMRG) approach. For ground-state properties
comparisons with strong-coupling perturbation theory [11, 28, 29] and DMFT(QMC) results
(extrapolated to zero temperature) [28, 32] confirm the accuracy of our method. Moreover,
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Figure 3. Ground-state energy E0/L + U/4 of the Mott–Hubbard insulator as a function of the
interaction strength. FE-DMFT(DDMRG) results for U = 4.5, 4.6, 4.7, 4.8, 5, 6 (circles) and
perturbation theory (lines) for various orders in 1/U.

we will present results for the (zero-temperature) single-particle excitations which are much
more accurate than those obtained with other DMFT approaches.

4.1. Ground-state properties

The ground-state energy per site of the Hubbard model can be calculated from ground-state
expectation values of the self-consistent single-impurity Anderson model (see the appendix)

E0(U)

L
+ U

4
= U〈d̂+

↑ d̂↑d̂+
↓ d̂↓〉SIAM + V 〈d̂+

σ f̂ 0,σ〉SIAM, (44)

where the two terms on the right-hand-side are the interaction and kinetic energy per site,
respectively, and V = t = 1. In figure 3 we show the ground-state energy E0(U)/L + U/4
in the Mott–Hubbard insulator phase for 4.5 � U � 6 in comparison with strong-coupling
perturbation theory (23). We see that there is a very good agreement between our numerical
data and the analytical results. Our data points lie below the best perturbative energy (11th-
order in 1/U). As expected, deviations from the perturbative results become larger when U

becomes smaller, from about 0.8 × 10−4 at U = 6 to 8.8 × 10−4 at U = 4.5. Our FE-
DMFT(DDMRG) energies are also lower than DMFT(QMC) energies [28, 32]. However, the
differences are small, of the order of 2 × 10−4 or less, for U � 4.8. As the Mott insulator
solution disappears for U < 4.8 in the DMFT(QMC) approach, no comparison with our data
is possible below that coupling strength.

It is difficult to evaluate the relative accuracy of our method from the ground-state energy
alone because that quantity is only defined up to a constant. The average double occupancy of
the Hubbard model is given by the average double occupancy of the impurity site in the single
impurity Anderson model at self-consistency

d(U) = 〈d̂+
↑ d̂↑d̂+

↓ d̂↓〉SIAM. (45)

At half filling this quantity takes only values between zero and 1/4 and thus provides a good
benchmark. In figure 4 we compare our FE-DMFT(DDMRG) results for the average double
occupancy with perturbation theory (24) up to 12th order in 1/U. Again, the agreement is
very good but deviations become clearly noticeable for U < 5. Quantitatively, the differences
between our values for d(U) and the results of the 12th-order perturbation expansion increase



Dynamical density-matrix renormalization group 7075

4 5 6
U

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

d(
U

)

4
th

order
8

th
 order

12
th

 order

0 0.5 1 1.5

(U-U
f
)
1/2

0.01

0.02

0.03

0.04

d(
U

)

Figure 4. Average double occupancy in the Mott–Hubbard insulator as a function of the interaction
strength U. FE-DMFT(DDMRG) results for U = 4.5, 4.6, 4.7, 4.8, 5, 6 (circle) and perturbation
theory for various orders in 1/U (lines). Inset: same results as a function of (U − Uf )1/2 with
Uf = 4.419. The dotted line is a fit to (46).

significantly from 2 × 10−6 (about 0.01%) at U = 6 to 2 × 10−3 (about 7%) at U = 4.5. This
is not surprising because we locate the critical value below which the Mott insulator no longer
exists at Uc ≈ 4.45 ± 0.05 (see below). The series expansion for the ground-state energy (23)
and the average double occupancy (24) converges only for U > Uc. Therefore, the results of
finite-order perturbation theory rapidly become inaccurate as U approaches Uc. A comparison
between FE-DMFT(DDMRG) and DMFT(QMC) [28, 32] data is more conclusive. Both
approaches provide results for the average double occupancy which deviate from each other
by less than 3 × 10−5, corresponding to relative errors of the order of 0.1%, down to U = 4.8.

With our FE-DMFT(DDMRG) approach the Mott insulator is stable for significantly
weaker couplings than predicted by other works [17, 28]. A closer inspection of our data for
small U � 5 shows that the double occupancy scales as

d(U) = df − C
√

U − Uf . (46)

This behaviour is clearly seen in the inset of figure 4. A fit of our data for U < 5 gives
Uf = 4.419, df = 0.03931 and C = 0.0202. Equation (46) suggests that the double
occupancy is a singular function of the coupling U at Uf . It is thus reasonable to identify
Uf with the critical coupling below which the Mott insulator no longer exists. The value
Uf = 4.419 is indeed in very good agreement with the coupling Uc = 4.45 ± 0.05 where
the Mott gap 	(U) closes (see below). As the average double occupancy is related to the
ground-state energy by (18), one expects that

E0(U)

L
+ U

4
= e0 + df (U − Uf ) − 2C

3
(U − Uf )3/2 (47)

for U → Uf . Our data for the ground-state energy for U < 5 are reproduced by this formula
within 5 × 10−5 if we use e0 = 0.12235 and the parameters df , Uf and C determined from
the fit of the double occupancy data. Therefore, our FE-DMFT(DDMRG) data for the ground-
state energy and the average double occupancy of the Hubbard model with 4.5 � U < 5
fulfil the relation (18) very precisely. For an arbitrary single-impurity Anderson model the
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Figure 5. Single-particle gap in the Mott–Hubbard insulator as a function of the interaction
strength. FE-DMFT(DDMRG) results (circles), second-order perturbation theory (solid line), and
the interpolated result from FE-DMFT(ED) (dashed line).

derivative of the expectation value in the right-hand side of (44) is not given by the average
double occupancy (45). The relation (18) between ground-state energy and double occupancy
is valid for the Hubbard model and thus only for the expectation values (44) and (45) of the
single-impurity Anderson model at self-consistency. Therefore, the scalings (46) and (47) of
our data confirm that we have found self-consistent DMFT solutions (30) for the Hubbard
model with couplings 4.5 � U < 5.

Moreover, these results show that our FE-DMFT(DDMRG) approach is accurate enough to
allow for an analysis of the critical behaviour and to determine critical exponents for the ground-
state energy and the average double occupancy. Note that the behaviour (46) of the average
double occupancy implies that the interaction energy Ud(U) scales as Uf df − CUf

√
U − Uf

close to Uf and, consequently, the kinetic energy scales as K + CUf

√
U − Uf for small

U − Uf , where e0 = K + Uf df . Recently, evidence for half-integer critical exponents have
also been found using an analysis of the strong-coupling perturbation theory extrapolated to
infinite order [28]. However, the first singular terms in the expansions of E0(U) and d(U) were
found to have exponents 5/2 and 3/2, respectively, compared to 3/2 and 1/2 in (47) and (46).

4.2. Single-particle excitations

The single-particle gap 	(U) found at the fixed-point of our iterative procedure is shown in
figure 5. As expected, 	(U) first decreases monotonically with U then vanishes below a finite
Uc > 0. For U = 4.5 the gap 	(U) = 0.062 is still large enough to be detected with our
method but for U = 4.4 we find 	(U) = 0. Thus we estimate that Uc ≈ 4.45 with an error
smaller than 0.05 in full agreement with the singular behaviour of the ground-state energy
(47) and double occupancy (46) described above. In figure 5 it is seen that second-order
perturbation theory describes the gap behaviour qualitatively but it predicts a vanishing of the
gap at a slightly too small Uc = 4.31. We also see that our FE-DMFT(DDMRG) results agree
with the results from the FE-DMFT(ED) investigation [11]. The small deviations are within
the error estimates for FE-DMFT(ED) calculations (see [11]). Concomitantly, the values for
the closing of the gap are almost equal, Uc = 4.43 ± 0.05 with the FE-DMFT(ED) method.

Our result for Uc is in conflict with the value Uc = 4.78 found using a DMFT(NRG)
approach [17] and an analysis of the strong-coupling expansion [28]. In contrast, we find
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Figure 6. Density of states of the upper Hubbard band for 4.6 � U � 5.

substantial gaps 	(U = 4.8) = 0.356 and 	(U = 4.7) = 0.260 just above and below that
coupling. These gaps are clearly larger than the discretization of the bath δ(U) = 0.125 that
we have used. Therefore, we are confident that Uc < 4.7, and that our result Uc ≈ 4.45 is
more reliable than the results of [17, 28].

For large interaction strengths, the derivative of the gap 	(U) with respect to U is unity,
	′(U � W) = 1, see (20). For finite U, our results show that 	′(U) > 1, in agreement with
perturbation theory (20). In the vicinity of the transition, U ≈ Uc, 	′(U) again approaches
unity and thus 	(U) = U − Uc.

The width of the Hubbard bands W∗(U) calculated at the fixed-point of the FE-
DMFT(DDMRG) procedure is almost constant for all U > Uc. At finite coupling it is slightly
larger than the value W∗(U) = W = 4 predicted by strong-coupling perturbation theory for
U → ∞ and reaches a maximum W∗(U) ≈ 4.1 around U = 5.

In order to explain this behaviour, we display the density of states as a function of U in
figure 6. For large interaction strengths, U � 6, second-order perturbation theory describes
the density of states D(ω) accurately, as seen in figure 2. The spectrum consists of the
two Hubbard bands around ±U/2 with a square-root onset at ω = ±	(U)/2. For weaker
couplings our FE-DMFT(DDMRG) calculations show clearly that a shoulder forms in the
density of states near the transition to the metallic phase. In figure 6, we can see that this
feature becomes progressively stronger as U approaches Uc. Its appearance is connected with
the non-monotonic behaviour of W∗(U) and of 	′(U) as a function of U near U = 5.

This feature is the remainder of the quasi-particle peak which is present at ω = 0 in
the metallic phase. Because the metal is a Fermi liquid, the quasi-particle peak has height
D(ω = 0) = 2ρ(0) = 2/π [33]. Figure 7 suggests that the quasi-particle peak splits at the
transition to the insulating state at Uc. (A splitting of the density of states at the transition
also occurs in the one-dimensional Hubbard model where Uc = 0+, as shown in [34] within a
field-theoretical approach.) As the gap opens, the two flanks of the peak quickly lose weight
so that they are rather small already at U = 4.5.

Clearly, our FE-DMFT(DDMRG) results for the gap and the bandwidth are more accurate
and the density of states shown in figures 2–7 have a much better resolution than those calculated
with other methods such as the FE-DMFT(ED) [11], DMFT(NRG) [17] or DMFT(DMRG)
[31]; DMFT(QMC) calculations [28] have not provided estimates for these quantities. In
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Figure 7. Density of states of the lower and upper Hubbard bands for U = 4.5.

particular, our investigation demonstrates the presence of a sharp feature just above the gap in
the density of states of the insulator and, thus, provides the first clear evidence for a splitting
of the quasi-particle peak at the metal–insulator transition. As an accurate description of the
low-energy excitations is necessary close to the critical coupling Uc, it is not surprising that
the insulating phase extends to slightly weaker couplings than predicted in previous works
[17, 28, 31]. The impurity solvers used in previous DMFT investigations do not have the
accuracy of the DDMRG method combined with the FE-DMFT. Therefore, they could not
resolve the small gap 	(U) � 0.260 for U � 4.7 and did not find a stable insulating phase
below that coupling.

5. Summary and conclusions

We have investigated the paramagnetic insulating ground state of the Hubbard model on a
Bethe lattice in the limit of infinite coordination number. In this limit, the problem can be
treated within the DMFT, i.e. it can be mapped onto a system made of a single impurity with
Hubbard interaction and hybridizations to a bath. The system properties have to be determined
self-consistently from the required equivalence between the single-particle Green function and
the hybridization function. In this work, we have used the fixed-energy approach to the DMFT
(FE-DMFT) [11]. The FE-DMFT provides stable solutions of the DMFT self-consistency
problem and a systematic convergence of the results with increasing system size.

As ‘impurity solver’ for the single-particle density of states we have used the dynamical
DDMRG [23]. Our results from FE-DMFT(DDMRG) for the ground state agree with
perturbation theory in 1/U, where the latter is applicable, and with QMC simulations, where
the DMFT(QMC) approach finds a stable insulating phase. With DDMRG we have used up to
160 sites to represent the self-consistent DMFT bath as compared with ns = 15 with ED. These
larger systems provide an enhanced resolution which is necessary to reveal structures in the
density of states near the gap. These structures emerge when the Mott gap becomes small, i.e.
when the coupling U approaches a critical value Uc below which there is no insulating phase
(≡Uc,1 in a scenario with coexisting metallic and insulating phases). Our FE-DMFT(DDMRG)
study gives Uc = 4.45 ± 0.05 for the critical interaction strength where the gap closes, in very
good agreement with our previous FE-DMFT(ED) study [11], Uc = 4.43 ± 0.05.

In contrast with the results of a recent DMFT(DMRG) work [31], our results are not
dominated by finite-size effects. At U = 6, for example, the density of states in [31] displays
a series of individual peaks instead of the smooth Hubbard bands found in our approach and
in perturbation theory. Preliminary results for the metallic Fermi-liquid phase just below Uc
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suggest that the narrow quasi-particle resonance simply splits at Uc. Narrow shoulders which
can be seen in the insulator density of states for U = 4.5 in figure 7 are the remainders of the
quasi-particle resonance. The shoulders quickly lose weight as the upper and lower Hubbard
bands separate from each other with increasing interaction strength U.

The method presented here can also be applied to the metallic phase, as done in [10] for the
weak-coupling limit. It is more difficult to resolve sharp quasi-particle peaks with DDMRG
[23] than with, e.g. the NRG. However, as shown in this work, our method offers the unique
advantage that we can resolve sharp structures in the vicinity of the Hubbard band onsets.
This is very important to describe the Mott insulating phase accurately and to determine the
parameter region where it exists. Therefore, we are confident that our FE-DMFT(DDMRG)
will provide deeper insight into the Mott–Hubbard metal-to-insulator transition.
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Appendix. Sum rule

At self-consistency we have from equations (13), (15), (16) and (30)

M1(U) − U

2
=

∑
σ

∫ µ+
LHB

µ−
LHB

dω ωDLHB(ω)

=
∑

σ

∫ µ+
LHB

µ−
LHB

dω ω〈d̂+
σ δ(ω + ĤSIAM − ESIAM

0 )d̂σ〉SIAM

=
∑

σ

〈d̂+
σ [d̂σ , ĤSIAM]−〉SIAM, (A.1)

where ESIAM
0 is the ground-state energy of the single-impurity Anderson model. The fact

that the first moments are identical at self-consistency also proves that the average double
occupancy of the Hubbard model d(U) is identical to the average double occupancy of
the interacting site in the impurity model. Therefore, we do not distinguish between d(U)

and dSIAM(U).
We carry out the commutators in (A.1) using the Hamiltonian (25) and obtain

M1(U) = 2Ud(U) +
∑
�,σ

V�〈d̂+
σ ψ̂�,σ〉SIAM. (A.2)

The ground-state expectation value on the right-hand side of this equation is readily calculated
in DMRG. Therefore, combining (17), (18) and (A.2) provides the ground-state energy density
of the Hubbard model in terms of the single-impurity results as

E0(U)

L
= Ud(U) − U

4
+

∑
�,σ

V�〈d̂+
σ ψ̂�,σ〉SIAM, (A.3)

which is equivalent to (44).
The static ground-state expectation value in (A.1) can be obtained from the corresponding

Green function. For completeness we define the time-ordered Green functions

G��;σ(t) = −i〈T̂ [ψ̂�,σ(t)ψ̂
+
�,σ]〉SIAM, G�d;σ(t) = −i〈T̂ [ψ̂�,σ(t)d̂

+
σ ]〉SIAM,

Gd�;σ(t) = − i〈T̂ [d̂σ(t)ψ̂
+
�,σ]〉SIAM. (A.4)
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With the help of the equation of motion it is not difficult to show that their Fourier transforms
obey (ω ≡ ω + i0+sgn ω)

G��;σ(ω) = 1

ω − ε�

+ V 2
�

(ω − ε�)2
Gdd;σ(ω), G�d;σ(ω) = V�

ω − ε�

Gdd;σ(ω) = Gd�;σ(ω).

(A.5)

Then, the first moment in (A.2) becomes (ν = 0+)

M1 = 2Ud(U) +
∑
�,σ

V�

∫ ∞

−∞

dω

2πi
eiων V�

ω − ε�

Gdd;σ(ω). (A.6)

At self-consistency we have (30) which implies

∑
σ

H(ω) =
∑
�,σ

V 2
�

ω − ε�

= G(ω). (A.7)

Therefore, we arrive at the important relation∫ ∞

−∞

dω

2πi
eiων[G(ω)]2 = 2(M1(U) − 2Ud(U)). (A.8)

It relates the ground-state energy of the single-impurity model back to the ground-state energy
of the Hubbard model. To show this we start from

ESIAM
0 (U) = −U

4
+ Ud(U) +

∑
�,σ

V�〈ψ̂+
�,σd̂σ + ψ̂�,σd̂

+
σ 〉SIAM +

∑
�,σ

ε�〈ψ̂+
�,σψ̂�,σ〉SIAM. (A.9)

With the help of (A.5) and (A.7) we find for the second term in (A.9)∑
�,σ

V�〈ψ̂+
�,σd̂σ + ψ̂�,σd̂

+
σ 〉SIAM = 2(M1(U) − 2Ud(U)). (A.10)

For the third term we use∑
�,σ

V 2
� ε�

(ω − ε�)2
= −H(ω) − ω

∂H(ω)

∂ω
(A.11)

to obtain∑
�,σ

ε�〈ψ̂+
�,σψ̂�,σ〉SIAM =

∑
�,σ

ε��(−ε�) − 1

2

∫ ∞

−∞

dω

2πi
eiωνG(ω)

[
G(ω) + ω

∂G(ω)

∂ω

]

=
∑
�,σ

ε��(−ε�) − 1

2
(M1(U) − 2Ud(U)). (A.12)

Summing the contributions from (A.10) and (A.12) in (A.9) gives the final result

ESIAM
0 (U) =

∑
�,σ

ε��(−ε�) − 2Ud(U) + 3

2
M1(U) − U

4
, (A.13)

where d(U) is the average double occupancy (18), M1(U) is the first moment (17), and �(x)

is the step function. This equation expresses the fact that the impurity provides corrections of
order unity to the extensive ground-state energy. Therefore, for our equidistant energy levels
ε� we find equation (39).
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